Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2322453121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470919

RESUMO

The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.


Assuntos
Diterpenos , Psychodidae , Animais , Feromônios/metabolismo , Psychodidae/metabolismo , Diterpenos/metabolismo , Terpenos , Monoterpenos
2.
Sci Rep ; 13(1): 8766, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253833

RESUMO

Sand fly salivary proteins have immunomodulatory and anti-inflammatory features; hence, they are proven to perform important roles in the early establishment of Leishmania parasite in the vertebrate host. Among them, salivary apyrase with anti-hemostatic properties has a crucial role during the blood meal process. In the present study, a Genome-Walking method was used to characterize a full-length nucleotide sequence of Phlebotomus (P.) kandelakii apyrase (Pkapy). Bioinformatics analyses revealed that Pkapy is a ~ 36 kDa stable and hydrophilic protein that belongs to the Cimex family of apyrases. Moreover, recombinant proteins of Pkapy and P. papatasi apyrase (Ppapy) were over-expressed in Escherichia coli BL2 (DE3) and their antigenicity in BALB/c mice was evaluated. Dot-blot and ELISA results indicated that both recombinant apyrases could induce antibodies in BALB/c. Moreover, a partial cross-reactivity between Pkapy and Ppapy was found. In vitro stimulation of splenocytes from immunized mice with the recombinant proteins indicated cross-reactive T cell proliferative responses. Cytokine analysis revealed significant production of IFN-γ (p < 0.001) and IL-10 (p < 0.01) in response to Pkapy. In conclusion, the full-length nucleotide sequence and molecular characteristics of Pkapy were identified for the first time. Immunologic analyses indicated that Pkapy and Ppapy are immunogenic in BALB/c mice and show partial cross-reactive responses. The immunity to Pkapy was found to be a Th1-dominant response that highlights its potential as a component for an anti-Leishmania vaccine.


Assuntos
Phlebotomus , Psychodidae , Animais , Camundongos , Phlebotomus/genética , Apirase/metabolismo , Camundongos Endogâmicos BALB C , Psychodidae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares
3.
PLoS Negl Trop Dis ; 15(12): e0009733, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932549

RESUMO

The males of many species of New World Phlebotomines produce volatile terpenoid chemicals, shown in Lutzomyia longipalpis s.l. to be sex/aggregation pheromones. Pheromone is produced by secretory cells which surround a cuticular reservoir which collects the pheromone and passes it through a cuticular duct to the surface of the insect. The pheromone then passes through specialised cuticular structures on the abdominal surface prior to evaporation. The shape and distribution of the specialised structures are highly diverse and differ according to species. In this study we used SEM to examine the interior cuticular pheromone collection and transport structures of 3 members of the Lu. longipalpis s.l. species complex and Migonemyia migonei. We found a new structure which we have called the manifold which appears to be a substantial extension of the interior tergal cuticle connected in-line with the cuticular duct and reservoir. The manifold of the Campo Grande member of the complex is longer and wider than the Jacobina member whereas the manifold of the Sobral member was shorter than both other members of the complex. Overall, the secretory apparatus of the Sobral member was smaller than the other two. The manifold of M. migonei was very different to those found in Lu. longipalpis s.l. and was positioned in a pit-like structure within the tergal cuticle. The secretory reservoir was connected by a short duct to the manifold. Differences in the size and shape of the manifold may be related to the chemical structure of the pheromone and may have taxonomic value. Examination of the interior cuticle by SEM may help to locate the secretory apparatus of vector species where pheromonal activity has been inferred from behavioural studies but the external secretory structures or pheromones have not yet been found.


Assuntos
Psychodidae/anatomia & histologia , Psychodidae/metabolismo , Atrativos Sexuais/metabolismo , Abdome/anatomia & histologia , Animais , Feminino , Masculino
4.
Nat Commun ; 12(1): 3213, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050141

RESUMO

Apart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


Assuntos
Fatores Quimiotáticos/metabolismo , Proteínas de Insetos/metabolismo , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Proteínas e Peptídeos Salivares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Cães , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/transmissão , Masculino , Camundongos , Pessoa de Meia-Idade , Infiltração de Neutrófilos/imunologia , Cultura Primária de Células , Psychodidae/imunologia , Psychodidae/metabolismo , Psychodidae/parasitologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/isolamento & purificação , Adulto Jovem
5.
PLoS Negl Trop Dis ; 15(2): e0009041, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556068

RESUMO

The bioecology of phlebotomine sand flies is intimately linked to the utilization of environmental resources including plant feeding. However, plant feeding behavior of sand flies remains largely understudied for Afrotropical species. Here, using a combination of biochemical, molecular, and chemical approaches, we decipher specific plant-feeding associations in field-collected sand flies from a dry ecology endemic for leishmaniasis in Kenya. Cold-anthrone test indicative of recent plant feeding showed that fructose positivity rates were similar in both sand fly sexes and between those sampled indoors and outdoors. Analysis of derived sequences of the ribulose-1,5-bisphosphate carboxylase large subunit gene (rbcL) from fructose-positive specimens implicated mainly Acacia plants in the family Fabaceae (73%) as those readily foraged on by both sexes of Phlebotomus and Sergentomyia. Chemical analysis by high performance liquid chromatography detected fructose as the most common sugar in sand flies and leaves of selected plant species in the Fabaceae family. Analysis of similarities (ANOSIM) of the headspace volatile profiles of selected Fabaceae plants identified benzyl alcohol, (Z)-linalool oxide, (E)-ß-ocimene, p-cymene, p-cresol, and m-cresol, as discriminating compounds between the plant volatiles. These results indicate selective sand fly plant feeding and suggest that the discriminating volatile organic compounds could be exploited in attractive toxic sugar- and odor- bait technologies control strategies.


Assuntos
Herbivoria/fisiologia , Psychodidae/fisiologia , Animais , Comportamento Animal , Feminino , Insetos Vetores/parasitologia , Quênia , Leishmaniose/microbiologia , Masculino , Plantas , Psychodidae/metabolismo , Psychodidae/parasitologia , Fatores Sexuais
6.
Sci Rep ; 10(1): 12903, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737362

RESUMO

During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Leishmaniose Visceral , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais
7.
Parasit Vectors ; 13(1): 237, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381071

RESUMO

BACKGROUND: During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot formation, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus Sergentomyia. METHODS: The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary proteins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P. argentipes females fed on repeatedly-bitten and naive hamsters, respectively. RESULTS: The P. argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated concentrations of serotonin significantly reduced the amount of eggs laid by P. argentipes when compared to the control. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental membrane feeding. Additionally, there were no differences in oviposition or mortality between P. argentipes females fed on immunized or naive hamsters. CONCLUSIONS: Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted to reptiles.


Assuntos
Aminas Biogênicas , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares , Animais , Anticorpos , Aminas Biogênicas/sangue , Aminas Biogênicas/farmacologia , Sangue/metabolismo , Cricetinae , Evolução Molecular , Fertilidade/efeitos dos fármacos , Histamina/sangue , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Mamíferos , Mortalidade , Phlebotomus/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Répteis , Saliva/imunologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Serotonina/sangue
8.
PLoS One ; 15(3): e0230537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208452

RESUMO

During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods' proteins. In the sialome, all proteins typical for sand fly saliva were identified-antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5'nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.


Assuntos
Proteínas de Insetos/genética , Psychodidae/genética , Glândulas Salivares/metabolismo , Transcriptoma , Animais , Apirase/análise , Apirase/genética , Apirase/metabolismo , Hialuronoglucosaminidase/análise , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Lagartos , Camundongos , Filogenia , Psychodidae/metabolismo , Receptores Odorantes/análise , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
9.
PLoS Negl Trop Dis ; 13(10): e0007767, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652261

RESUMO

OBJECTIVE: To evaluate the efficacy of a synthetic sex-aggregation pheromone of the sand fly vector Lu. longipalpis, co-located with residual insecticide, to reduce the infection incidence of Leishmania infantum in the canine reservoir. METHODS: A stratified cluster randomised trial was designed to detect a 50% reduction in canine incident infection after 24 months in 42 recruited clusters, randomly assigned to one of three intervention arms (14 cluster each): synthetic pheromone + insecticide, insecticide-impregnated dog collars, or placebo control. Infection incidence was measured by seroconversion to anti-Leishmania serum antibody, Leishmania parasite detection and canine tissue parasite loads. Changes in relative Lu. longipalpis abundance within households were measured by setting three CDC light traps per household. RESULTS: A total 1,454 seronegative dogs were followed-up for a median 15.2 (95% C.I.s: 14.6, 16.2) months per cluster. The pheromone + insecticide intervention provided 13% (95% C.I. 0%, 44.0%) protection against anti-Leishmania antibody seroconversion, 52% (95% C.I. 6.2%, 74·9%) against parasite infection, reduced tissue parasite loads by 53% (95% C.I. 5.4%, 76.7%), and reduced household female sand fly abundance by 49% (95% C.I. 8.2%, 71.3%). Variation in the efficacy against seroconversion varied between trial strata. Equivalent protection attributed to the impregnated-collars were 36% (95% C.I. 14.4%, 51.8%), 23% (95% C.I. 0%, 57·5%), 48% (95% C.I. 0%, 73.4%) and 43% (95% C.I. 0%, 67.9%), respectively. Comparison of the two interventions showed no statistically consistent differences in their efficacies; however, the errors were broad for all outcomes. Reductions in sand fly numbers were predominant where insecticide was located (chicken and dog sleeping sites), with no evidence of insecticide-induced repellence onto humans or dogs. CONCLUSION: The synthetic pheromone co-located with insecticide provides protection particularly against canine L. infantum parasite transmission and sand fly vector abundance. The effect estimates are not dissimilar to those of the insecticide-impregnated collars, which are documented to reduce canine infection incidence, human infection and clinical VL disease incidence, in different global regions. The trialled novel lure-and-kill approach is a low-cost potential vector control tool against ZVL in the Americas.


Assuntos
Doenças do Cão/prevenção & controle , Inseticidas/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/prevenção & controle , Psychodidae/metabolismo , Atrativos Sexuais/metabolismo , Atrativos Sexuais/farmacologia , Animais , Brasil , Controle de Doenças Transmissíveis/métodos , Reservatórios de Doenças , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Doenças do Cão/transmissão , Cães , Feminino , Humanos , Incidência , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/veterinária , Masculino , Carga Parasitária , Controle de Pragas/métodos , Inquéritos e Questionários
10.
FASEB J ; 33(12): 13367-13385, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553893

RESUMO

Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.


Assuntos
Ferroquelatase/metabolismo , Heme/biossíntese , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/metabolismo , Virulência , Sequência de Aminoácidos , Animais , Coproporfirinogênio Oxidase/metabolismo , Feminino , Ferroquelatase/química , Ferroquelatase/genética , Leishmaniose Cutânea/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Protoporfirinogênio Oxidase/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Psychodidae/parasitologia , Homologia de Sequência
11.
Sci Rep ; 9(1): 5340, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926880

RESUMO

The habit of blood feeding evolved independently in many insect orders of families. Sand flies and mosquitoes belong to separate lineages of blood-feeding Diptera and are thus considered to have evolved the trait independently. Because of this, sand fly salivary proteins differ structurally from those of mosquitoes, and orthologous groups are nearly impossible to define. An exception is the long-form D7-like proteins that show conservation with their mosquito counterparts of numerous residues associated with the N-terminal domain binding pocket. In mosquitoes, this pocket is responsible for the scavenging of proinflammatory cysteinyl leukotrienes and thromboxanes at the feeding site. Here we show that long-form D7 proteins AGE83092 and ABI15936 from the sand fly species, Phlebotomus papatasi and P. duboscqi, respectively, inhibit the activation of platelets by collagen and the thromboxane A2 analog U46619. Using isothermal titration calorimetry, we also demonstrate direct binding of U46619 and cysteinyl leukotrienes C4, D4 and E4 to the P. papatasi protein. The crystal structure of P. duboscqi ABI15936 was determined and found to contain two domains oriented similarly to those of the mosquito proteins. The N-terminal domain contains an apparent eicosanoid binding pocket. The C-terminal domain is smaller in overall size than in the mosquito D7s and is missing some helical elements. Consequently, it does not contain an obvious internal binding pocket for small-molecule ligands that bind to many mosquito D7s. Structural similarities indicate that mosquito and sand fly D7 proteins have evolved from similar progenitors, but phylogenetics and differences in intron/exon structure suggest that they may have acquired the ability to bind vertebrate eicosanoids independently, indicating a convergent evolution scenario.


Assuntos
Culicidae/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Sequência de Aminoácidos , Animais , Cinética , Ligantes , Modelos Moleculares , Adesividade Plaquetária , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 115(46): 11790-11795, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373823

RESUMO

Blood-sucking phlebotomine sand flies (Diptera: Psychodidae) transmit leishmaniasis as well as arboviral diseases and bartonellosis. Sand fly females become infected with Leishmania parasites and transmit them while imbibing vertebrates' blood, required as a source of protein for maturation of eggs. In addition, both females and males consume plant-derived sugar meals as a source of energy. Plant meals may comprise sugary solutions such as nectar or honeydew (secreted by plant-sucking homopteran insects), as well as phloem sap that sand flies obtain by piercing leaves and stems with their needle-like mouthparts. Hence, the structure of plant communities can influence the distribution and epidemiology of leishmaniasis. We designed a next-generation sequencing (NGS)-based assay for determining the source of sand fly plant meals, based upon the chloroplast DNA gene ribulose bisphosphate carboxylase large chain (rbcL). Here, we report on the predilection of several sand fly species, vectors of leishmaniasis in different parts of the world, for feeding on Cannabis sativa We infer this preference based on the substantial percentage of sand flies that had fed on C. sativa plants despite the apparent "absence" of these plants from most of the field sites. We discuss the conceivable implications of the affinity of sand flies for C. sativa on their vectorial capacity for Leishmania and the putative exploitation of their attraction to C. sativa for the control of sand fly-borne diseases.


Assuntos
Herbivoria/fisiologia , Psychodidae/fisiologia , Animais , Comportamento Animal , Cannabis , Feminino , Insetos Vetores/parasitologia , Leishmania/genética , Leishmaniose/microbiologia , Masculino , Psychodidae/metabolismo , Psychodidae/parasitologia , Fatores Sexuais
13.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232186

RESUMO

Sandfly fever Sicilian virus (SFSV) is one of the most widespread and frequently identified members of the genus Phlebovirus (order Bunyavirales, family Phenuiviridae) infecting humans. Being transmitted by Phlebotomus sandflies, SFSV causes a self-limiting, acute, often incapacitating febrile disease ("sandfly fever," "Pappataci fever," or "dog disease") that has been known since at least the beginning of the 20th century. We show that, similarly to other pathogenic phleboviruses, SFSV suppresses the induction of the antiviral type I interferon (IFN) system in an NSs-dependent manner. SFSV NSs interfered with the TBK1-interferon regulatory factor 3 (IRF3) branch of the RIG-I signaling pathway but not with NF-κB activation. Consistently, we identified IRF3 as a host interactor of SFSV NSs. In contrast to IRF3, neither the IFN master regulator IRF7 nor any of the related transcription factors IRF2, IRF5, and IRF9 were bound by SFSV NSs. In spite of this specificity for IRF3, NSs did not inhibit its phosphorylation, dimerization, or nuclear accumulation, and the interaction was independent of the IRF3 activation or multimerization state. In further studies, we identified the DNA-binding domain of IRF3 (amino acids 1 to 113) as sufficient for NSs binding and found that SFSV NSs prevented the association of activated IRF3 with the IFN-ß promoter. Thus, unlike highly virulent phleboviruses, which either destroy antiviral host factors or sequester whole signaling chains into inactive aggregates, SFSV modulates type I IFN induction by directly masking the DNA-binding domain of IRF3.IMPORTANCE Phleboviruses are receiving increased attention due to the constant discovery of new species and the ongoing spread of long-known members of the genus. Outbreaks of sandfly fever were reported in the 19th century, during World War I, and during World War II. Currently, SFSV is recognized as one of the most widespread phleboviruses, exhibiting high seroprevalence rates in humans and domestic animals and causing a self-limiting but incapacitating disease predominantly in immunologically naive troops and travelers. We show how the nonstructural NSs protein of SFSV counteracts the upregulation of the antiviral interferon (IFN) system. SFSV NSs specifically inhibits promoter binding by IFN transcription factor 3 (IRF3), a molecular strategy which is unique among phleboviruses and, to our knowledge, among human pathogenic RNA viruses in general. This IRF3-specific and stoichiometric mechanism, greatly distinct from the ones exhibited by the highly virulent phleboviruses, correlates with the intermediate level of pathogenicity of SFSV.


Assuntos
DNA/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/farmacologia , Febre por Flebótomos/metabolismo , Phlebovirus/metabolismo , Psychodidae/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , DNA/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Febre por Flebótomos/tratamento farmacológico , Febre por Flebótomos/virologia , Phlebovirus/efeitos dos fármacos , Phlebovirus/genética , Fosforilação , Psychodidae/genética , Psychodidae/virologia , Transdução de Sinais , Proteínas não Estruturais Virais/genética
14.
PLoS Pathog ; 14(1): e1006794, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352310

RESUMO

Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1ß, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel's ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG's ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Leishmaniose Cutânea/patologia , Proteínas de Membrana/farmacologia , Proteoglicanas/farmacologia , Proteínas de Protozoários/farmacologia , Psychodidae/metabolismo , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Progressão da Doença , Feminino , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/parasitologia , Pele/patologia
15.
Parasit Vectors ; 10(1): 269, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558760

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) is an important public health challenge in Brazil because of the high number of human and canine cases reported annually. Leishmania infantum is the etiological agent of VL and Lutzomyia longipalpis is its main vector. However, evidence suggests that this taxon constitutes a species complex. In Sao Paulo state, there are two populations of Lu. longipalpis, each secreting distinct pheromones, (S)-9-methylgermacrene-B and Cembrene 1; both have been associated with different patterns of VL transmission. The aim of the present study was to investigate the temporal distribution and natural infection of the (S)-9-methylgermacrene-B population of the Lu. longipalpis complex in a highly VL endemic area of Sao Paulo state to obtain information that may contribute to the surveillance of this zoonosis and to the planning of preventive and control measures. METHODS: The study was carried out in Panorama municipality, Sao Paulo State. Captures were made during 24 months in seven domiciles. The relation between sand fly abundance and climatic variables, temperature and humidity, was analyzed and natural infection by Leishmania spp. in sand fly females was investigated by nested PCR. RESULTS: A total of 4120 sand flies, with predominance of Lu. longipalpis (97.2%) were captured. The highest averages of sand flies/night/trap occurred in the rainy season (November-March) and a positive, significant correlation between sand fly abundance and the temperature and humidity 20 days before the capture days was found. Leishmania infantum DNA was detected in three out of 250 pools of females analyzed, giving an estimated minimum infection rate of 1.2%. CONCLUSION: The identification of the climatic association between the high abundance of the vector in this highly endemic VL focus constitutes a fundamental point for evaluating future vector and dog control measures and this information increases the data of VL foci in Sao Paulo state that could contribute to the public health authorities in planning prevention and control measures. The identification of natural infection by Le. infantum in Lu. longipalpis specimens reinforces the importance of entomological surveillance activities in this municipality.


Assuntos
Insetos Vetores/metabolismo , Leishmaniose Visceral/transmissão , Psychodidae/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Atrativos Sexuais/metabolismo , Distribuição Animal , Animais , Brasil , Feminino , Humanos , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/parasitologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Masculino , Psychodidae/classificação , Psychodidae/genética , Psychodidae/parasitologia , Estações do Ano
16.
Parasit Vectors ; 9(1): 413, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27457627

RESUMO

BACKGROUND: Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed "specific/restricted" vectors that support the development of one Leishmania species only, while the others belong to so-called "permissive" vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. RESULTS: We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45-50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. CONCLUSIONS: We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.


Assuntos
Glicoconjugados/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Leishmania/fisiologia , Mucinas/metabolismo , Psychodidae/metabolismo , Psychodidae/parasitologia , Animais , Sistema Digestório/metabolismo , Sistema Digestório/parasitologia , Glicoconjugados/genética , Proteínas de Insetos/genética , Mucinas/genética , Psychodidae/genética
17.
PLoS Negl Trop Dis ; 10(1): e0004322, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26752686

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-), a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID) route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani. METHODOLOGY/PRINCIPAL FINDINGS: To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution), antibody production (ELISA) and cytokine expression (qPCR) in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection. CONCLUSIONS: Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization.


Assuntos
Leishmania donovani/genética , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/metabolismo , Vacinas Protozoárias/imunologia , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares/imunologia , Animais , Cricetinae , Deleção de Genes , Injeções Intradérmicas , Leishmania donovani/imunologia , Proteínas de Protozoários/genética
18.
Sci Rep ; 6: 19300, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758086

RESUMO

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.


Assuntos
Inativadores do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Psychodidae/imunologia , Psychodidae/metabolismo , Saliva/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ativação do Complemento/efeitos dos fármacos , Complemento C1/antagonistas & inibidores , Complemento C1/imunologia , Complemento C1/metabolismo , Complemento C4/antagonistas & inibidores , Complemento C4/imunologia , Complemento C4/metabolismo , Humanos , Proteínas Recombinantes/farmacologia
19.
Salvador; s.n; 2016. 94 p. ilus, tab.
Tese em Português | LILACS | ID: biblio-1001017

RESUMO

A Leishmaniose Tegumentar (LT) é uma importante patologia causada pelo protozoário Leishmania braziliensis, o principal agente etiológico nas Américas. Esse parasita é transmitido aos hospedeiros através durante a alimentação sanguínea do vetor. Comumente encontrados em área endêmica de LT, os flebótomos Lutzomyia intermedia e Lutzomyia whitmani, foram incriminados como vetores da L. braziliensis. Apesar dos amplos estudos acerca da saliva dos vetores e do papel dos flebótomos na transmissão, muito pouco se sabe sobre o envolvimento de L. whitmani na LT. OBJETIVO. Este trabalho visou avaliar o papel de L. whitmani em etapas críticas da transmissão da L. braziliensis, como a avaliação do vetor na área endêmica, a exposição de animais no peridomicílio humano ao flebótomo e o papel da saliva do vetor no estabelecimento da L. braziliensis em infecção experimental murina. MATERIAIS E MÉTODOS. Para a obtenção dos dados, foram realizados testes sorológicos como ELISA e Western blot no monitoramento das galinhas da área endêmica e nos camundongos mantidos em laboratório. Também foram realizadas coletas e identificação dos flebótomos da área endêmica e ensaios de estimulação celular para análise da resposta celular dos camundongos. RESULTADOS. Os resultados mostraram que galinhas no peridomicílio humano produziram anticorpos anti-saliva de L. whitmani, apresentando reconhecimento específico à saliva desta espécie. Também foi observado que a imunização de camundongos com saliva de L. whitmani é capaz de induzir proteção contra a infecção por L. braziliensis em camundongos imunizados. CONCLUSÃO. Estudos envolvendo a participação de importantes vetores em área endêmica são fundamentais para o entendimento da dinâmica da cadeia epidemiológica e futuros estudos envolvendo o desenvolvimento de vacinas eficazes contra a doença.


INTRODUÇÃO. A Leishmaniose Tegumentar (LT) é uma importante patologia causada pelo protozoário Leishmania braziliensis, o principal agente etiológico nas Américas. Esse parasita é transmitido aos hospedeiros através durante a alimentação sanguínea do vetor. Comumente encontrados em área endêmica de LT, os flebótomos Lutzomyia intermedia e Lutzomyia whitmani, foram incriminados como vetores da L. braziliensis. Apesar dos amplos estudos acerca da saliva dos vetores e do papel dos flebótomos na transmissão, muito pouco se sabe sobre o envolvimento de L. whitmani na LT. OBJETIVO. Este trabalho visou avaliar o papel de L. whitmani em etapas críticas da transmissão da L. braziliensis, como a avaliação do vetor na área endêmica, a exposição de animais no peridomicílio humano ao flebótomo e o papel da saliva do vetor no estabelecimento da L. braziliensis em infecção experimental murina. MATERIAIS E MÉTODOS. Para a obtenção dos dados, foram realizados testes sorológicos como ELISA e Western blot no monitoramento das galinhas da área endêmica e nos camundongos mantidos em laboratório. Também foram realizadas coletas e identificação dos flebótomos da área endêmica e ensaios de estimulação celular para análise da resposta celular dos camundongos. RESULTADOS. Os resultados mostraram que galinhas no peridomicílio humano produziram anticorpos anti-saliva de L. whitmani, apresentando reconhecimento específico à saliva desta espécie. Também foi observado que a imunização de camundongos com saliva de L. whitmani é capaz de induzir proteção contra a infecção por L. braziliensis em camundongos imunizados. CONCLUSÃO. Estudos envolvendo a participação de importantes vetores em área endêmica são fundamentais para o entendimento da dinâmica da cadeia epidemiológica e futuros estudos envolvendo o desenvolvimento de vacinas eficazes contra a doença.


Assuntos
Humanos , Psychodidae/crescimento & desenvolvimento , Psychodidae/imunologia , Psychodidae/metabolismo , Psychodidae/parasitologia , Psychodidae/patogenicidade
20.
Parasit Vectors ; 8: 505, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26438221

RESUMO

BACKGROUND: Behavior rhythms of insect vectors directly interfere with the dynamics of pathogen transmission to humans. The sand fly Lutzomyia longipalpis is the main vector of visceral leishmaniasis in America and concentrates its activity around dusk. Despite the accumulation of behavioral data, very little is known about the molecular bases of the clock mechanism in this species. This study aims to characterize, within an evolutionary perspective, two important circadian clock genes, Clock and vrille. FINDINGS: We have cloned and isolated the coding sequence of L. longipalpis' genes Clock and vrille. The former is structured in eight exons and encodes a protein of 696 amino acids, and the latter comprises three exons and translates to a protein of 469 amino acids. When compared to other insects' orthologues, L. longipalpis CLOCK shows a high degree of conservation in the functional domains bHLH and PAS, but a much shorter glutamine-rich (poly-Q) C-terminal region. As for L. longipalpis VRILLE, a high degree of conservation was found in the bZIP domain. To support these observations and provide an elegant view of the evolution of both genes in insects, phylogenetic analyses based on maximum-likelihood and Bayesian inferences were performed, corroborating the previously known insect systematics. CONCLUSIONS: The isolation and phylogenetic analyses of Clock and vrille orthologues in L. longipalpis bring novel and important data to characterize this species' circadian clock. Interestingly, the poly-Q shortening observed in CLOCK suggests that its transcription activity might be impaired and we speculate if this effect could be compensated by other clock factors such as CYCLE.


Assuntos
Comportamento Animal/fisiologia , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica/fisiologia , Psychodidae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Psychodidae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...